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In this work, a diffusion equation model (DEM) is applied to a room acoustics case for in-depth
sound field analysis. Background of the theory, the governing and boundary equations specifically
applicable to this study are presented. A three-dimensional geometric model of a monumental
worship space is composed. The DEM is solved over this model in a finite element framework to
obtain sound energy densities. The sound field within the monument is numerically assessed; spatial
sound energy distributions and flow vector analysis are conducted through the time-dependent DEM
solutions.
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1. Introduction

The aim of this study is to investigate the sound field of a monumental worship structure
by applying a diffusion equation model (DEM) in room acoustics predictions. The DEM is
implemented within a finite-element framework for detailed analysis of sound energy flows
between different subvolumes of the structure. Many different methods have previously been
developed for sound field investigations in room acoustics, which is a branch of acoustics
that deals with acoustical fields inside enclosed environments. Among these enclosures,
conference halls, multi-purpose auditoria, concert halls, opera houses and worship spaces
most commonly necessitate detailed acoustical design. Especially in design phase of such
speech or music-related venues, or for in-depth experimental analysis, theoretical models
are utilized.

Classical theories applied in room acoustics estimations and simulations include statisti-
cal acoustics T2 wave theoryS ™ geometrical room acoustics 87 statistical energy analysis®

1750029-1


http://dx.doi.org/10.1142/S0218396X17500291

Z. S. Giil, N. Xiang € M. Caliskan

acoustic radiosity,Z ™ and most recently, diffusion equation model application 218 Differ-
ent models have different limitations, Savioja and Svensson have published the most recent
overview on this research field® yet excluding the diffusion theory™ 18 and the transport
theory for room acoustic simulations T7H20

The main difference between classical statistical acoustics and the diffusion equation
model is that the DEM allows for modeling the spatial variation of the reverberant sound
field, while the statistical model estimates yield only one single value for each room under
the diffusion sound field assumption. Therefore, the DEM represents a higher order of the
statistical acoustics in room acoustics® The diffusion model, which takes the sound source
location, room geometry and different surface properties into account, is able to predict
spatial variations/distributions of sound energy, while the statistical acoustics theory does
not. On the other hand, the DEM assumes sound particles travel along straight lines at the
speed of sound. A recent work using the energy radiative transport equation™® describes
the theoretical framework of a geometrical sound particle approach which can asymptot-
ically be reduced to the diffusion equation model™2¥ so the DEM is also governed by
geometrical acoustics theory. The major advantage of the DEM over conventional geometri-
cal acoustics approaches is its computational efficiency in numerical implementations. One
reason for that is ray-tracing-based algorithms spend entire computational effort to provide
a solution only for one single source-receiver configuration, for multiple positions, while
the DEM inherently provide all the solutions on every finite-element grid points within
one complete computation run. The DEM can be solved using different mediums. In this
paper, finite element method is utilized. Another approach is applying finite difference
method 2122

Local reverberant sound energy densities in rooms with diffuse reflecting boundaries
can be described as diffusion processes in analogy to heat transport in solids originated
by Fourier® or light energy propagating through scattering media?® both of which are
based on the mathematical theory of diffusion. This model has also been found suitable
to predict reverberant sound energy in arbitrarily shaped enclosures with nonhomogeneous
distribution of boundary absorption.

The numerical implementation of the DEM in room acoustics predictions is thoroughly
studied by Valeau et al™ Their results point out the possibility of this new model to be a
solution of various room shapes. Billon et al 14 applied the diffusion model for the coupled
volume configuration, their results are compared with experimental data, with statistical
theory and a ray-based model. Mean sound pressure level of the reverberant field is obtained
from the diffusion model. The obtained solution allows the estimation of the sound decay
and consequently the decay times at any location in the rooms. Jing and Xiang?® have taken
a step forward to extend the DEM for high absorption cases so that some surfaces of the
room under test could be sound absorptive. Authors used an Eyring absorption term for
the boundary condition, whereas previous models are only for rooms with low absorptive
interior surfaces. Billon et alZ0have also independently applied the Eyring absorption model
for solving the DEM in nonuniformly absorbing rooms. They have supported the argument
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using Eyring model by experiments on real cases, specifically a reverberation chamber with
sound absorptive patches of glass wool.

Jing and Xiang?® applied the DEM to coupled-volume systems to visualize sound flow
directions (vectors). A finite element solver is used for numerical implementation. A singu-
larity problem with the Eyring coefficient in the DEM boundary term, in rooms with local
surfaces having an absorption coefficient of unity, is eliminated by the modified boundary
condition developed by Jing and Xiang. Simulations and scale model tests were conducted
for comparisons and reliability analysis of the new boundary term. Xiang et al®¥ carried
out another study on the DEM revealing sound energy distributions and energy feedback
across the coupling aperture in the coupled volume systems. These authors 29 proposed a
new absorption term in boundary conditions associated with the DEM which can handle
high absorption for some small portions of interior surfaces. Their experimental scale model
results reveal sound energy feedback in coupled-volume systems in terms of modeling sound
energy flow vectors.

A shortcoming of the DEM is that the model is only valid in later time segments of
an impulse response (late reverberation). According to Xiang et al?Z and Escolano et al=0
studies, direct sound and early reflections in initial time steps do not create diffuse field
conditions, therefore, the DEM does not yield prediction results for this early part. The very
first time intervals should be taken out of the impulse response data so as to ensure reliable
DEM analysis. Their study reveals that the DEM is valid after two or more mean free times,
the time associated with the mean free path length. Xiang et al?? recently carried out a
systematic study using the DEM in sound fields of coupled volume systems. It reveals that
the DEM is only valid to predict reverberation in the later time instance (after the diffuse
sound field is established, or at least two or three mean free times (MFTSs)); even when the
overall surface absorption is as high as 0.48, yet the accurate modeling of the reverberation
process becomes valid at even later time instants, 6-8 MFTs later.

In this study, a real-size monumental worship space, for the first time, is investigated
using the diffusion equation model for in-depth sound field analysis. This paper is struc-
tured as follows, Sec. Pl describes the fundamental theory of the diffusion equation model that
heavily relies on recent work by Valeau™ and J ing and Xiang.m In this section, interior and
boundary equations and technical details of a finite-element solution using the coMsOL®
solver are provided. Section ] discusses modeling results of the historically significant wor-
ship space by spatial sound energy distribution and flow vector analysis. Section @ concludes
the paper by emphasizing the major outcomes of this study.

2. Theory of the Diffusion Equation Model

This section presents the governing and boundary equations within scope of the DEM that
fits most properly to enclosures with proportionate dimensions. The room acoustics DEM
is based on the sound particle concept under the assumption™2U2BI that particles travel
along straight lines at the speed of sound in the interior space and multiple diffuse reflections
occur on the room boundaries which can be conceived as scattering objects. These diffuse
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reflections of the sound particles will establish a reverberation process building up a so-called
diffuse sound field in the enclosure under test, such that the evolution of this diffuse sound
field can be described as a diffusion process.

2.1. Interior diffusion equation

When interior surfaces of an enclosure are diffusely reflecting, the sound energy flow vector
J caused by the gradient of the sound energy density w at position (r), and time (¢) can be
expressed by Fick’s lawlZ31

J(r,t) = —D grad w(r,t) (1)

where D is the diffusion coefficient, which takes into account the room morphology via its
mean free path (A3 given by

A 4V
D=20= (2)
3 39
where V' is the volume of the room and S is the total surface area of the room. Under
assumption that the sound energy density w in a region (domain V) excluding sound sources
changes per unit timél® as
ow(r,t)
ot
where Eq. is used to arrive at the right-hand side of Eq. (). V2 is Laplace operator.
In the presence of an omni-directional sound source within a room region or domain (V)

= —divI(r,t) = DVZw(r,t), €V, (3)

with time-dependent energy density, Eq. (@) has to take the omni-directional sound source,
q(r,t), into account’d

ow(r,t)
ot
The sound energy density changing with time may partially be caused by the air dissipation,
so as to include the air dissipation as energy losses

8’w—é§;, t) = q(r, t) + DV2w(r, t) - me(ra t)a eV, (5)

where ¢ is speed of sound and m is the coefficient of air absorption.
In Eq. (5), the source term ¢(r, t) is zero for any subdomain in which no source is present.

= q(r,t) + DVuw(r,t), €V. (4)

In a time-dependent solution, a point source with an arbitrary acoustic power of P(t) can
be modeled as an impulsive sound source as follows:

q(rs,t) = Eogd(r —rg)d(t — to), (6)

where ¢ is the Dirac-delta function, ry denotes the position of the source. Ejy is the energy
produced by the source at source location ry and at time ¢(. For practical purposes, a source
emitting a constant power P in a short time interval At can be considered. Thus, Ey can
be approximated by Ey ~ PA¢.13
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2.2. Boundary conditions

The diffusion equation is defined for ‘inside the domain (V')’ in the previous section. The
effects of enclosing room surfaces can analytically be expressed by boundary equations
defined for ‘on the boundary surfaces (5)’. If the sound energy in an enclosure/domain (V)
cannot escape from bounded surfaces (S), then the boundary condition equation! becomes

J(r,t) - n=—-DVuw(r,t) - n=0, onV, (7)

where n is the surface outgoing normal, D is again the ‘diffusion coefficient’ and w(r, t) is the
acoustic energy density at a position (r) and time (¢). The position (r) is specifically on the
interior surfaces. Equation (7) is a so-called homogeneous Neumann boundary condition 3!
The boundary condition established to include energy exchanges on enclosing surfaces is

J(r,t)-n=—DVuw(r,t) -n = Axcw(r,t), on S, (])

where Ax is an exchange coefficient or the so-called absorption factor which is expressed as
follows:

«
AX - AS - ZJ (9)

where « is the absorption coefficient of the specific surface/boundary. The subscript S of
Ag is used to denote Sabine absorption. The diffusion equation model with this boundary
condition is accurate only for modeling rooms with low absorption. To improve the accuracy
of mixed boundary conditions associated with high absorption for specific room surfaces, the
Sabine absorption coefficient in the absorption factor is replaced by the Eyring absorption
coefficient ag26/27
—log(1 — a)
— i
The subscript E of Ag is used to denote Eyring absorption. There exists a singularity
within the diffusion-Eyring model given in Eq. (10), when the absorption coefficient for a
surface in the frequency of interest becomes 1.0. For resolving the singularity problem with
the Eyring model, a modified boundary condition is introduced ™ This modified absorption
factor term can be applied for mixed boundary conditions or more specifically for modeling
the local effects of the sound fields that have comparatively higher absorption on specific
surfaces, as given byl?

Ax =Ap = (10)

Q@
T 11

2(2 —«) (11)
In the current case of the worship space, given the fact that the room has a carpet floor
that is absorptive in specific octave bands, versus a low absorptive/reflective upper shell,
its boundary conditions are best described by the modified mixed boundary model. Thus,
combining Egs. (8) and (11) gives the resulting system boundary equation

Ax = Ay =

ow(r,t)  co
- D T To a)w(r,t), on S. (12)
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Equations (5), (6) and (12) are applied to obtain the time-dependent solution. Resulting
w(r,t)’s after conversion of sound energy into sound level (SL) in decibels, where [log; w] is
logarithm to the base 10, are used for spatial sound energy density distribution as indicated
in Eq. (13).

SL = 10 * log o (w(r, t)). (13)

Fick’s law expressed in Eq. (I) is employed in the following to investigate sound energy

flow vector analysisB2

3. Numerical Implementation in a Worship Space

In order to validly apply the above described diffusion equation in room acoustic scemarios,l‘*)“_Ql

the scattering sound particle density must be high, and the reflection of energy must domi-
nate over absorption in the space under investigation. This historically significant venue in
the current study falls within this principal assumption, the interior of the venue features
rich decorative (diffusion) elements, ornamentation, arches, columns, and the majority of
the interior surfaces are also highly reflective. Only a small portion of the interior surfaces
is covered by low-absorptive carpet with an absorption coefficient as low as 0.23, yet the
overall room absorption coefficient amounts to 0.12, for 1kHz.

The basis of the finite element method is the representation of a body or a structure by
an assemblage of subdivisions called finite elements. The finite element method translates
partial differential equation problems into a set of linear algebraic equations. The mesh
settings determine the resolution of the finite element mesh used to discretize the model
in one, two or three dimensions. The advantage of the DEM in room acoustics is that the
meshing condition does not depend on the wavelength, rather the mean free path in defining
mesh size. As long as the maximum mesh size is smaller than the mean free path of the room,
the DEM can be applied with high computational efficiency for a range of frequencies. In
application of the DEM analysis over the monumental worship space, a sufficiently detailed
interior geometry of the space is imported in a commercial finite element solver software,
namely, coMsOL® Multi-physics.

The geometric model of the worship space is divided into 124 788 linear Lagrange-type
mesh elements (Fig. ). The maximum size should be user defined in order not to exceed
the mean free path (MFP), while the minimum size depends on the geometrical attributes
of the space under consideration. For instance, the transitions between domes and adjacent
arches in this model create smaller surfaces requiring smaller mesh sizes at those locations.
A pure cubical form could be meshed with larger sized and fewer numbers of elements. As
indicated in the previous literature 132529 the meshing condition in DEM is based only on
the MFP (1/6 of the MF) 13 Maximum mesh element sizes should be smaller than the MFP.
In this study, the minimum mesh element size is 1.12m and maximum is 6.20 m. So the
range is in between 1/3 to 1/16 of MFP. For smaller surfaces as of pendentive connections
to main dome, surfaces get smaller than the maximum mesh size and the meshing gets
smaller. Using smaller meshes only increases the computational expense of simulation. As

1750029-6



Diffusion Equation-Based Finite Element

(a) (b)

Fig. 1. (a) Solid mesh model of the monument, the entire interior volume is meshed into 124 788 linear
Lagrange-type mesh elements with sizes ranging between 1.12m and 6.2m. (b) Section view with source
(S1) location.

long as the maximum mesh size criteria is satisfied than DEM is applicable for the sake of
reducing the computational expenses.

The inner plan of the monument is a rectangle measuring 63m x 69m. The height
of the dome from the ground to the keystone is 47.75m, which gives an interior volume
~ 129000m3. The interior surface area is 28258 m2. According to Eq. (2), the MFP of
the room is estimated to be 18.26 m and the MFT of the room is 0.053 sec (53 msec). It is
known that DEM is valid when statistical and geometrical room acoustics are valid. The
overall reverberation time at 250 Hz amounts to 12 sec (Fig.[2]), so the Schroeder frequency
estimates to 19 Hz. Considering the large scale/size and interior dimensions of the monu-
ment, DEM solutions for frequency range above and including 250 Hz are found reliable and
thus presented under Sec. Hl Xiang et al2 also reported that the diffusion equation model
can be considered as valid after at least two or three MFP times. In this case, two MFTs
correspond to 0.1sec and three MFTs correspond to 0.15sec, so all the results of energy
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---m-- Simulation | 16.79 12.04 6.58 5.53 4.08 257

Fig. 2. Reverberation time (730) comparison of field tests and simulations over 1/1 octave bands.
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Table 1. Interior finish materials’ sound absorption coefficients over 1/1 octave bands.

Material 125 Hz 250 Hz 500 Hz 1kHz 2kHz  4kHz
Lime-based plastered brick 0.03 0.05 0.15 0.18 0.20 0.23
Marble 0.01 0.01 0.01 0.01 0.02 0.02
Carpet 0.08 0.15 0.17 0.23 0.41 0.59

density distributions or energy flux are considered as to be 0.2sec after the direct sound
arrival.

In DEM simulations, the absorption coefficients of locational surfaces can be assigned
to have different absorption coefficients. The upper structure of the case building is finished
with lime-based plaster painted brick and marble, while the floor is carpet. In the model, the
relevant sound absorption coefficient data for each octave band is assigned to the absorption
terms of the boundary equations, specific to local surface materials of interior boundary
layers. The absorption coefficients assigned to the materials applied within the monument
are given in Table [II

It should be noted that prior to simulation studies field measurements were taken within
the monument 3 Before implementation of DEM simulation, initially the model is fine-
tuned with field test results taking into account the reverberation time (73p) (Fig. B).
Sound source is located in front of front/mihrab wall at the central axis at a height of
1.5m (Fig. @M(b)). The time-dependent DEM solutions are obtained under the impulsive
source excitation, providing the spatial sound energetic room impulse responses to derive
the sound density and sound energy flow vector distributions. For such a huge volume, the
time-dependent simulation takes approximately 3h on a computer with Intel(R) Core(TM)
i5 CPU, M540@2.53 GHz processor.

4. Sound Energy Distribution and Flow Vector Analysis

Over the geometric model of the monumental worship space, a time-dependent DEM solu-
tion is obtained. Throughout the entire interior volume, spatial sound energy distribu-
tion levels (in dB), and sound energy flow vector analysis results are available based on
Eq. (III)'E| In the following, results are summarized for selected octave bands; for 250 Hz
(Figs. BHZ) and for 1000 Hz (Figs. BHI2]) over axonometric, plan and section views. To
prevent unnecessary repetition of data, specific times are selected for illustrating common
trends, as other time intervals are either identical or very close to the prior/following time
steps.

Figure 3 illustrates spatial sound energy level distributions out of the DEM solutions in
terms of volume and slice plots as well as flow vectors/array plots for 250 Hz at a time of
0.1sec. This time instant indicates the ignition of the impulsive sound source. The point
source is located in front of the mihrab wall, where the energy starts flowing from that
location towards the upper domical shelter and side walls. At this time instant, the concen-
tration of sound energy density is at the front part of the mihrab wall, where the point source
is defined. The energy starts to flow from the mihrab wall towards the back of the prayer
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Fig. 3. Diffusion equation model results, spatial sound energy distributions and flow vectors for 250 Hz, time:
0.1 sec.
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Fig. 4. Diffusion equation model results, spatial sound energy distributions and flow vectors for 250 Hz, at a
time instance of 0.3 sec.
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Fig. 5. Diffusion equation model results, spatial sound energy distributions and flow vectors for 250 Hz, at a

time instance of 0.5 sec.
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Fig. 9. Diffusion equation model results, spatial sound energy distributions and flow vectors for 1kHz, time:
0.3 sec.
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Fig. 10. Diffusion equation model results, spatial sound energy distributions and flow vectors for 1 kHz, time:
0.5 sec.
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Fig. 11. Diffusion equation model results, spatial sound energy distributions and flow vectors for 1kHz at a
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hall, while, at this point the central dome and back wall aisles have not been completely
filled with sound energy. The zones closer to the floor (receiver/prayer heights) underneath
the central dome in this period receive more energy compared to prayer locations in front
of the back wall and other locations underneath the back wall corner domes and the upper
back half of the central dome.

From Figs. @7, the initial time steps of the energy density distribution and energy
flows are depicted after the source is terminated, with a time step of 0.2 sec including time
instances of: 0.3sec, 0.5sec, 0.7sec and 0.9sec. In the first time steps, the flow vectors are
directed towards the mihrab wall to the upper central dome and at the end all are pointed
back towards the prayer floor, which is the energy scarce zone at that time period. From this
point out, the energy center is the central dome, with its comparatively reflective surfaces
and focusing geometry.

Figure 7 shows that the energy within that period is concentrated at the central axis
underneath the main dome and semi-domes. It is beneficial that the dome focusing area is
located well above the receiver height. On the other hand, this energy accumulation center
keeps feeding energy back to the floor area, as can be observed from sound energy flow
vectors. Furthermore, the side aisles underneath secondary domes get less energy compared
to the mihrab wall section.

From Figs. [BHIZ], spatial sound energy level distributions from the DEM are illustrated
by volume and slice plots as well as flow vectors/array plots for 1kHz. Figure B illus-
trating the time step 0.1sec, shows the ignition of the impulsive sound source. The initial
time steps after termination of the source signal are provided from Figs. [JHIT], including
time steps 0.3sec, 0.5sec and 0.7sec. In this time period, the energy flow vectors return
from the dome towards the prayer floor. After the time instant 0.9sec (Fig. [2)), the flow
vector patterns are similar, again indicating the central dome as an energy concentration
zone.

For 1kHz, the behavior of energy distribution densities and energy flow patterns is sim-
ilar to the solution for 250 Hz. The major differences are the time of energy returns and
the duration of the sound energy decay. As expected, the lower reverberation time at 1 kHz
in comparison to 250 Hz, results in an earlier flow vector returns and a shorter duration
of the whole decay process. This frequency dependence is due to the boundary absorption
assignment. The absorptive carpet and reflective upper shell structure — including walls —
together with the dominant geometrical features cause different energy flow characteristics
for different frequency bands. The main advantage of providing spatial sound energy dis-
tribution plots is to better visualize the sound energy flows. Rather than the sound energy
level differences (or absolute difference between the maximum and the minimum in dB),
the pattern of energy flows within the volume is sought. Regardless of the magnitude of this
absolute difference in sound energy levels, the energy would still drain from the energy dense
volume/zone to the scarce zone. The asymmetric distribution of this energy zoning inside
the structure contributes to the overlapping of early and late energy decays, particularly
closer to the floor.
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5.

In

Diffusion Equation-Based Finite Element

Conclusion

this study, the diffusion equation model (DEM) is solved over a historically significant

worship space. The simulation results are significant in examining the three-dimensional
sound field of this existing monumental structure using spatial sound energy density dis-
tribution and flow vector analysis. It should be emphasized that the DEM, as applied by
finite element modeling, is a practical and scientific method of room acoustic predictions,

particularly for in-depth sound field analysis restricted to the reverberation process. As an

outcome of this study, the unique application of the DEM over an existing structure, will

motivate the use of this new tool for room acoustics estimations whether in design of virtual

Sp

aces (concept designs), or for renovation of existing spaces.
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