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ABSTRACT

Measurements of multiple decay times in acoustically coupled spaces are of 

practical significance when studying and designing acoustics of the coupled 

spaces. Previous work [Xiang JASA 98 (1995) 2112-21, Xiang & Goggans JASA 

110 (2001) 1415-24] has applied a parametric model of Schroeder decay 

functions for sound energy decay analysis. This paper discusses recent 

development of efficient decompositions of Schroeder decay model terms within 

Bayesian framework for decay parameter estimations. As relevant decay 

parameters, in addition to decay times, this paper introduces numerical methods 

for simultaneous estimations of level differences, turning points, decay 

time-related derivations. This work shows that Bayesian probabilistic inference 

can be used as powerful tools for sound energy decay analysis in both coupled 

spaces and single-space halls. Implemented routines of Bayesian decompositions 

will be demonstrated over different frequency ranges using experimentally 

measured room impulse responses in concert halls, churches, real-sized and 

scale-modeling coupled-volume systems.   
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1. INTRODUCTION 

With increasing research activities [1-4] in acoustically coupled spaces, analysis of sound energy 

decay characteristics becomes a highly required task which is to evaluate different decay times 

and related parameters from single-, or double-slope decay characteristics of Schroeder decay 

functions [5] using measured or simulated room impulse responses. Traditionally however, 

identification of double- or multiple- sloped decay in room impulse response measurement has 



been considered very challenging. Bayesian inference has been applied in coping with the 

demanding tasks in estimating multiple decay times from Schroeder decay functions [6-8]. In 

addition to Bayesian decay time estimation, this paper also introduces definition of level 

differences and turning points once double-slope decay has been identified. Using 

experimentally measured data in concert halls, churches, real-sized and scale-modeling 

coupled-volume systems, this paper demonstrates functioning tools to cope with demanding 

tasks in current research and practice. 

2. BAYESIAN FORMULATION

2.1 Schroeder decay models 

This section begins with Schroeder decay function data T

Kddd ],,,[ 21D . Derived from the 

nature of Schroeder's integration, a Schroeder decay function model has been established  

eGAD                          (1) 

which approximates the data D with an error vector e. A is a column vector of m coefficients, 

termed linear parameter vector. G is a matrix of mK . jth column of G is given by 

Figure 1. Schroeder decay function measured in Sant. Patrick Church, Watervliet, NY, along with 

the decay model function. 
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where jT is jth decay time to be determined for mj1 , mT . Kt represents the upper 

limit of Schroeder's integration. 10 Kk . Recent works [6-8] have experimentally proven 

the validity of this model. Figure 1 shows one example of Schroeder decay function evaluated 

from real hall measurements in Sant. Patrick Church, Watervliet, NY and its model function 

GA  with properly estimated model parameters.  

We begin with eigen-decomposition of mm square matrix: 
TTT EEGG ,                       (3) 

where T)( represents matrix transpose,  is a diagonal matrix containing m eigenvalues of 

eigenvector E. The eigen-decomposition facilitates converting G into an orthonornalized 

model 
1GEQ ,                         (4)

with
T .                         (5) 

In similar fashion, the linear parameter vector A can be converted into the orthonormal- 

ized one or vice verse: 

EA ; EA 1 ,                     (6)

such that the error function e can be equivalently expressed in terms of Schroeder decay 

function D and the orthonormalized model Q :

QDe .                        (7) 

2.2 Bayesian decay parameter estimation 

Bayesian theory formulates the posterior probability distribution function (PPDF) through the 

prior probability distribution and likelihood function via Bays' theorem:  
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where ),( Ip D acts in the context of decay time estimation as a normalization constant. T is 

a vector matrix of m coefficients, termed nonlinear parameter vector. ),( Ip T,  is the prior 

distribution function of  and T. Background information I includes that the Schroeder 

decay model in eq. (2) through eq. (1) describes the data D reasonably well so that all 

errors e  are bounded by a finite value. Given the finite error and a reasonable model as 

only available information, application of the principle of the maximum entropy assigns a 

Gaussian distribution to the likelihood function ),( Ip T,|D  and an independence to errors 



ie from each other, so that 
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The posterior function ),,( Ip D|T, implies that the error variance 2  at this stage is still 

unknown. The marginalization over with a uniform prior, and over by assigning Jeffreys' 

prior leads to an analytically tractable PPDF in form of the student-T distribution: 
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TT                   (10)  

with

DQq
T .                          (11) 

The marginalization results in the student-T PPDF over only the decay time space, being 

independent on linear parameter vector A. So the decay time estimation can be carried out 

in dramatically reduced dimensionality. Once the decay times T are estimated, an expected 

linear parameter vector Â can be determined [6]. 
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Figure 2. Comparison between measured decay function (Schroeder curve) in scale model 

coupled spaces and the decay model function. The model function is decomposed into 3 terms: 

1st slope, 2nd slope and the term associated with background noise.  



3. SCHROEDER FUNCTION DECOMPOSITION 

Figure 2 shows a comparison between a measured Schroeder decay function (Schroeder curve) 

in scale model coupled spaces and the decay function model given in Eq. (2). In this example a 

two-slope decay function model is used within the Bayesian decay time estimation. Three model 

terms (1
st
 slope, 2

nd
 slope and the term associated with the background noise) are also shown in 

Fig. 2. 

Previous work [6] pointed out, architectural acousticians are primarily interested in the 

relative difference A  between the linear parameters ( 1A , 2A ), in addition to both decay times 

( 1T , 2T ). Figure 2 shows that the Schroeder decay function decays only after the time point of 

direct sound. The plateaus at 0 dB at the beginning of the normalized decay curve reflects the 

fact that prior to the direct sound the sound energy does not decay at all. In practical 

measurements the direct sound varies significantly depending on the source-receiver positions. 

In addition, the data analysis should generally begin at the decay level of -5 dB (as for 

reverberation time analysis). The Bayesian decay decomposition within this work is carried out 

also in a similar fashion: all the data are taken from -5dB till the end of the data record, 

regardless of single- or double-slope cases.  

Figure 3. Definition of level difference L  and turning point ( tx , ty ) with help of a zoom 

into a small portion of Fig. 2. 



3.1 Decay time uncertainty  

The decay time estimation within Bayesian framework heavily relies on proper evaluations of 

PPDF expressed in eq.(10). The mode of the PPDF can be used not only for decay time 

estimation in terms of maximum a posterior (MAP), the shape of the PPDF mode can also be 

used for uncertainty estimation [8]. To estimate the uncertainties expressed in standard 

derivations of estimated decay times, sampling methods have been applied based on a Gaussian 

model, where the co-variance matrix around the PPDF mode are sampled using the importance 

sampling [8]: 
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where ),|( IDp rT  is given in eq.(10) and )( rTg  is Gaussian random process. Besides the 

importance sampling, a recent effort is to develop more effective sampling methods such as slice 

sampling or nested sampling [10]. 

3.2 Level difference  

To avoid arbitrariness, a definition of the level difference is introduced. Upon Schroeder decay 

function decomposition in case of double-slope decay, two straight lines corresponding to two 

decay slopes in the logarithmic presentation can be determined. Due to arbitrariness of the direct 

sound, one needs to determine the crossing points of the two decay lines with the time line of 

-5dB in the logarithmic scale as show in Fig. 2: 

ktbay 111 ,                           (15)

ktbay 222 ,                         (16) 

with

jj Aa lg10 ,                          (17) 

 )/8.13(lg10 jj Teb ,                      (18) 

where jT s and jA s are estimated in terms of Bayesian analysis of Schroeder decay 

decomposition [6,8]. The time line of – 5dB is determined along the measured decay function. 



The level difference L (in dB) is then defined as the logarithmic of the ratio between the two 

crossing points, or the difference of the two crossing points in the logarithmic scale (as shown in 

Fig. 2): 

dBattk
yyL 521 |)(   (dB)                   (19) 

3.3 Turning point  

Some authors [9] also studied the location of a ‘turning point’ at which the early rapid decay 

intersects with the slower decay. Extensive investigations on a large number of measured results 

show that this turning point will not easily be recognized by a visual inspection. An algorithmic 

approach is needed in practice. Upon Schroeder decay function decomposition in case of 

double-slope decay, two straight lines corresponding to two decay slopes will in general not 

co-indent with the data (Schroeder curve) rather lower than the data, the crossing point 

'P ( 0x , 0y ) of two straight decay lines to each other is given by:  

)/()( 21120 bbaax .                       (20) 

)/()( 2121120 bbbabay ,                     (21) 

which is often way off the Schroeder decay curve and the model decay curve. The turning point 

tP ( tx , ty ) is defined to be a point on the decay model curve, to which the crossing point ( 'P )

has the minimum distance: 

min)()( 2

0

2

0 yyxx tt
.                    (22) 

Two decay times or decay ratio ( 12 /TT ), along with the level difference ( L in dB), the 

co-ordinate of the turning point ( tx , ty ) will be eventually used for further studies of acoustics in 

coupled spaces.  

Table I .  Measured results  over octave bands,  analyzed using Bayesian approaches.  In 

addit ion to the decay t imes,  their  standard derivations,  the level  difference,  the 

turning point  co-ordinates are expressed in t ime (Tt)  and level(Lt) .

Turning point Band

(Hz) 

T1

(sec) 

Std1

(sec) 

T2

(sec)

Std2

(sec) 

L
(dB) Tt(sec) Lt(dB) 

125 0.70 5.51E-3 2.80 3.62E-2 2.51 0.28 -10.42 

250 0.69 2.81E-3 2.40 2.38E-2 3.65 0.28 -11.43 

500 0.99 3.06E-3 2.74 4.42E-2 7.22 0.38 -16.93 

1000 0.87 1.88E-3 2.57 5.97E-2 9.34 0.41 -19.44 

4 EXPERIMENTAL RESUTLS 

Table I shows some experimental results measured in real coupled spaces, the 

Student Union of the University of Mississippi, USA. Table I lists the analyzed 

results of one room impulse response near the coupled area. Over octave bands 



between 125 Hz and 1 kHz, the two decay times, their standard derivations, the 

level differences and the turning point co-ordinates are listed. At this 

measurement position, only one decay slope has been found higher than 1 kHz 

octave bands. This confirms experimentally that the double-slope phenomena 

are frequency-dependent [2]. 

5 SUMMARY  

This work describes the Bayesian analysis for Schroeder decay function decomposition. The 

work is of significance when studying acoustics in coupled spaces. Recent research activities 

show that the modeling effort, the objective and subjective investigations require a quantitative 

description of systematic changes in acoustically coupled spaces. One of important tasks is to 

quantify sound energy decay characteristics. Schroeder decay functions in coupled spaces are 

decomposed using a model-based Bayesian approach. This work demonstrates that model-based 

Schroeder decay decomposition provides decay times, level differences of two decay processes 

and the turning point along the decay function. Along with decay time-related derivations and 

inter-dependences evaluated within Bayesian framework, these relevant decay parameters will 

be used in the near future for further study of acoustics in coupled spaces.  
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